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Summary

➢Brief review of Turin parametrization
with DGLAP evolution  

➢TMD evolution formalism (ACQR)

➢Analytical approximation
 

➢Fit of the data

➢Conclusions
 



TMD evolution* formalism

➢Phenomenological fits of the TMDs has been performed so far
neglecting QCD evolution or applying QCD (DGLAP) evolution
only to the collinear part of the TMD  parametrizations.
 

●J.C. Collins, Foundation of Perturbative QCD, Cambridge Monographs on Particle Physics, 
Nuclear Physics and Cosmology, No. 32, Cambridge University Press, 2011.
●S. M. Aybat and T. C. Rogers, Phys. Rev. D83, 114042 (2011), arXiv:1101.5057 [hep-ph]
●S. M. Aybat, J. C. Collins, J.-W. Qiu and T.C. Rogers, arXiv:1110.6428 [hep-ph]

➢In 2011 Aybat, Collins, Qiu & Rogers presented their TMD evolution formalism
applicable to the unpolarized PDFs  (or FFs) and to the Sivers function   
 *

➢Can this formalism be applied to fit the data?
➢How can it be compared with the traditional approach?    

 



Turin standard approach (DGLAP)



Turin standard approach (DGLAP)

➢Unpolarized TMDs are factorized in x and k
 ┴
 . Only the collinear part evolves

with DGLAP evolution equation. No evolution in the transverse momenta:
 

Collinear PDF (DGLAP evolution)

Normalized Gaussian: no evolution



Turin standard approach (DGLAP)

➢The Sivers function is  factorized in x and k
 ┴
 and 

proportional to the unpolarized PDF. 

Proportional to the unpolarized TMD



Turin standard approach (DGLAP)

➢The Sivers function is  factorized in x and k
 ┴
 and 

proportional to the unpolarized PDF. 

Collinear PDF (DGLAP)



TMD evolution formalism*

●J.C. Collins, Foundation of Perturbative QCD, Cambridge Monographs on Particle Physics, 
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TMD evolution formalism

➢Let us denote with F either a PDF (or a FF)
or the first derivative of the Sivers function in the impact parameter space: 

~

Unpolarized PDF

Unpolarized FF

First derivative of  the
Sivers function



TMD evolution formalism

➢At LO the evolution equation can be summarized by the following expression: 

✎

Corresponding to Eq. 44 of Ref [*]  with K=0 and : 
~

●[*]S. M. Aybat, J. C. Collins, J.-W. Qiu and T.C. Rogers, arXiv:1110.6428 [hep-ph]



TMD evolution formalism

➢At LO the evolution equation can be summarized by the following expression: 

✎

Input function at the scale Q
0

in the impact parameter space
 

✎

Evolution kernel

Output function at the scale Q
in the impact parameter space
 



TMD evolution formalism

➢At LO the evolution equation can be summarized by the following expression: 

➢Perturbative part of the evolution kernel 

✎
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➢Perturbative part of the evolution kernel 

✎



TMD evolution formalism

➢At LO the evolution equation can be summarized by the following expression: 

➢Perturbative part of the evolution kernel 

✎

Scale that separates the perturbative region
from the non perturbative one



TMD evolution formalism

➢At LO the evolution equation can be summarized by the following expression: 

➢Perturbative part of the evolution kernel 

✎

One of the possible prescription
to separate the perturbative region
from the non perturbative one



TMD evolution formalism

➢At LO the evolution equation can be summarized by the following expression: 

✎

➢Non Perturbative (scale independent) part of the evolution kernel
that needs to be empirically modeled 

Common choice used in the 
unpolarized DY data analyses
in the CSS formalism  

Landry et al. Phys Rev D67, 073016



TMD evolution formalism

➢One can get the TMD in the momentum space by Fourier transforming: 



Parametrization ot the input functions

➢We want to compare the effect of TMD evolution vs our traditional approach (DGLAP)  

➢Same parametrization of the input function at the initial scale
in the trasverse momentum space.  



Parametrization ot the input functions

Example: unpolarized pdf

Fourier transf.



Parametrization ot the input functions



Parametrization ot the input functions



Parametrization ot the input functions



➢Then the evolution equations for unpolarized TMDs become simply:

➢While for the Sivers function we have:

Parametrization of the input functions



➢R(Q,Q0,b
T
) exhibits a non trivial dependence on b

T

that prevents any analytical integration 

We can therefore neglect the R  dependencẽ
on bT  and define:

Analytical (approximated) solution of the 
TMD evolution equation 

R(Q,Q0,b
T
) becomes constant for b

T
 > 1 GeV -1

Good approximation for large b
T 
i.e. small k

┴
  

~

~



➢For instance, replacing R with R in the unpolarized, we get: 

Which is Gaussian in b
T
, and will then Fourier-transform into a Gaussian in k

┴
 

Analytical (approximated) solution of the 
TMD evolution equation 

~



➢Similarly, for the unpolarized TMD fragmentation function, we have 

Analytical (approximated) solution of the 
TMD evolution equation 



➢For the Sivers distribution function, we find: 

Analytical (approximated) solution of the 
TMD evolution equation 



DGLAP evolution is slow at
moderate x and in this
range of Q2 

DGLAP evolution is slow at
moderate x and in this
range of Q2 

For the unpolarized PDF, the 
analytical  approximation 
holds up to large k

┴

For the unpolarized PDF, the 
analytical  approximation 
holds up to large k

┴

Comparative analysis of TMD evoultion 
equations 

Starting scale Q0=1 GeV
Same function at Q0

Starting scale Q0=1 GeV
Same function at Q0



Comparative analysis of TMD evoultion 
equations 

For the Sivers function,
the analytical approximation 
breaks down at large k

┴ 
values

For the Sivers function,
the analytical approximation 
breaks down at large k

┴ 
values

Starting scale Q0=1 GeV
Same function at Q0

Starting scale Q0=1 GeV
Same function at Q0



Fit of HERMES and COMPASS SIDIS data

11 free parameters

Fixed parameters



➢We perform 3 different fits:

Fit of HERMES and COMPASS SIDIS data

➢Data sets:

TMD-fit (computing TMD evolution equations numerically)

DGLAP fit (using DGLAP evolution equation for the collinear part of the TMD)

TMD-analytical fit (solving TMD evolution equations in the analytical approx.)

HERMES (2009) π+ π- π0 K+ K-

COMPASS Deuteron (2004) π+ π-  K+ K-

COMPASS Proton (2011) h+ h- 



(Analytical)

HERMESHERMES
ππ++

COMPASS COMPASS 
hh++

Fit of HERMES and COMPASS SIDIS data
11 free parameters, 261 pointsχχ22 tables  tables 
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(Analytical)

HERMESHERMES
ππ++

COMPASS COMPASS 
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χχ22 tables  tables 

(Analytical)

HERMESHERMES
ππ++

COMPASS COMPASS 
hh++

Fit of HERMES and COMPASS SIDIS data
11 free parameters, 261 points

7 points

9 points



Fit of HERMES and COMPASS SIDIS data



A. Airapetian et al., Phys. Rev. Lett. 103, 152002 (2009), arXiv:0906.3918 [hep-ex]

Fit of HERMES and COMPASS SIDIS data



F. Bradamante, arXiv:1111.0869 [hep-ex]

Fit of HERMES and COMPASS SIDIS data



TMD Evolution TMD Evolution DGLAP Evolution DGLAP Evolution 

Q
0
=1 GeV

Fit of HERMES and COMPASS SIDIS data



 We have analyzed the Sivers effect by up-grading old fits 
with the addiction of the most recent HERMES and COMPASS 
SIDIS data.
 We have applied TMD evolution equations to the 

phenomenological analysis of the Sivers effect.
 We have compared the analysis obtained using TMD evolution 

equations with the results found by considering the DGLAP 
evolution of the collinear part of the TMDs.
 SIDIS data support the TMD evolution, but further 

experimental data covering a wider range of Q2 values are 
necessary to confirm these results. 

Conclusions and further remarks







➢0.2 <z<0.8  

➢Here is squared, 
strongly suppress the 
asymmetry as it 
becames larger and 
larger  



➢Numerator of the asymmetry in analytical approximation for a DY process 

➢Here is squared, 
strongly suppress the 
asymmetry as it 
becames larger and 
larger  

➢g2 is more crucial for DY processes than for the present SIDIS data
(because of a wider kinematical range in Q2)  
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